(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

-(-(neg(x), neg(x)), -(neg(y), neg(y))) → -(-(x, y), -(x, y))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

-(-(neg(z0), neg(z0)), -(neg(z1), neg(z1))) → -(-(z0, z1), -(z0, z1))
Tuples:

-'(-(neg(z0), neg(z0)), -(neg(z1), neg(z1))) → c(-'(-(z0, z1), -(z0, z1)), -'(z0, z1), -'(z0, z1))
S tuples:

-'(-(neg(z0), neg(z0)), -(neg(z1), neg(z1))) → c(-'(-(z0, z1), -(z0, z1)), -'(z0, z1), -'(z0, z1))
K tuples:none
Defined Rule Symbols:

-

Defined Pair Symbols:

-'

Compound Symbols:

c

(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

-'(-(neg(z0), neg(z0)), -(neg(z1), neg(z1))) → c(-'(-(z0, z1), -(z0, z1)), -'(z0, z1), -'(z0, z1))
We considered the (Usable) Rules:

-(-(neg(z0), neg(z0)), -(neg(z1), neg(z1))) → -(-(z0, z1), -(z0, z1))
And the Tuples:

-'(-(neg(z0), neg(z0)), -(neg(z1), neg(z1))) → c(-'(-(z0, z1), -(z0, z1)), -'(z0, z1), -'(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(-(x1, x2)) = [2]x12   
POL(-'(x1, x2)) = [3] + [2]x12   
POL(c(x1, x2, x3)) = x1 + x2 + x3   
POL(neg(x1)) = [2] + x1   

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

-(-(neg(z0), neg(z0)), -(neg(z1), neg(z1))) → -(-(z0, z1), -(z0, z1))
Tuples:

-'(-(neg(z0), neg(z0)), -(neg(z1), neg(z1))) → c(-'(-(z0, z1), -(z0, z1)), -'(z0, z1), -'(z0, z1))
S tuples:none
K tuples:

-'(-(neg(z0), neg(z0)), -(neg(z1), neg(z1))) → c(-'(-(z0, z1), -(z0, z1)), -'(z0, z1), -'(z0, z1))
Defined Rule Symbols:

-

Defined Pair Symbols:

-'

Compound Symbols:

c

(5) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(6) BOUNDS(O(1), O(1))